PRIMARY STRUCTURE OF THE GENE CODING FOR THE HAEMAGGLUTININ OF INFLUENZA VIRUS A/LENINGRAD/385/80(H3N2): DETECTION OF A POINT MUTATION RESPONSIBLE FOR THE ANTIGENIC DRIFT

B. V. ¹MIGUNOVA, A. Z. ¹PLUSNIN, N. A. ³PETROV, M. I. ²RIVKIN, E. B. ¹GRINBAUM, L. V. ²OBUCHOVA, O. K. ¹KUZNETZOV

¹Research Institute of Vaccines and Sera Minmedbioprom U.S.S.R., 198320, Leningrad,

²Institute of Cytology and Genetics, Siberian Department of the U.S.S.R.

Academy of Sciences, 630090 Novosibirsk,

and Institute of Molecular Biology,

³Scientific-Industrial Unit "Vector" Minmedbioprom U.S.S.R., 633159, Kolcovo, U.S.S.R.

Received January 20, 1989

Summary. — Primary structure of the gene coding for haemagglutinin (HA-gene) of influenza virus A/Leningrad/385/80(H2N2) isolated during the epidemics of influenza in Leningrad in 1980 was determined. The close relationship of HA gene of this virus to the corresponding gene of the virus A/Bangkok/1/79(H3N2) was confirmed. It was shown that a single mutation in an antigenic site (the change from isoleucine to leucine at position 51 of HA1 gene) caused an antigenic drift. One silent mutation was detected (nucleotide 428 of HA1 gene) which points at the relatedness of strains A/Leningrad/385/80 with A/Bangkok/2/79 and with other more recent strains. These data allowed to determine the position of the strain A/Leningrad/385/80 HA gene regarding to the evolutionary relationships of HA genes of influenza A (H3N2 subtype) viruses. The branch leading to the abovementioned strain is supposed to start from a point common for strains isolated following A/Bangkok/1/79. The mutations of HA genes presented in this subgroup were analysed supporting the notion on limited evolutionary potential of the subtype H3N2 influenza viruses.

Key words: influenza virus; haemagglutinin gene; DNA sequencing; antigenic drift; evolution of influenza virus

Introduction

The investigation of shift and drift changes of influenza virus remains an urgent problem. The major factor moving the evolution of influenza virus subtypes is the necessity to overcome the natural or vaccine-induced immunity. This can be achieved mainly by the variability of haemagglutinins (HA).

The development of methods of gene cloning and sequencing allows to monitor at molecular level the evolution of genes (especially of HA gene). This is necessary not only for the determination of interdependence between existing virus strains but for the evaluation of the potential of viruses belonging to a concrete subtype without which it is difficult to imagine a well documented prognosis of future changes.

The best studied nucleotide sequences of HA gene are of Hongkong (subtype H3N2) strains (the first of them were isolated in 1968). The evolutionary scheme of interdependence between different strains of this subtype has been created on the basis of the data on the primary structure of HA genes (Both et al., 1983; Petrov et al., 1986). Analysis of these data allowed to reveal the evolution mechanisms and make the conclusion about the limitated evolutionary potential of viruses of this subtype. It is reasonable to suppose that possibilities of genetic drift are restricted, first owing to a relatively small size of antigenic sites and secondly, because not all (in fact, few) amino acid substitutions appear to be neutral (that is not affecting molecular structural and functional stability) and at the same time useful for the virus with regard to epidemiological activity. This is reflected, for example, in the fact that repeated substitutions in the same positions are found during evolution. A part of these substitutions are reversions (Both et al., 1983).

The available information is obviously insufficient for a complete understanding of differences between successful and unsuccessful variants of HA molecular structure and consequently of the mechanisms of influenza virus drift. The data presented in this paper on the primary structure of HA gene of a Bangkok subgroup virus — the A/Leningrad/385/80 — contribute to the understanding of the evolution of influenza A(H3N2) viruses.

Materials and Methods

Viruses. Influenza virus strain A/Leningrad/385/80R(H3N2) (a vaccine strain, Gorev et al., 1983) was obtained by recombination from strain A/Leningrad/385/80(H3N2) isolated during an epidemic in Leningrad in the Virology laboratory of the Institute of experimental Medicine, (U.S.S.R. Academy of Medical Sciences) and strain A/PR8/34(H1N1). According to the authors' data the recombinant inherited the HA nad NA genes from A/Leningrad/385/80.

Haemagglutination-inhibition (HI) test was performed according to a conventional metodh using 4 HAU of the virus; serum was incubated for 60 min at 20 °C and then the mixture reacted with 1 % chicken crythrocytes.

DNA copies of the viral RNA were synthesized on the virion RNA (vRNA) template using oligonucleotide primers and reverse transcriptase. These and the recombinant plasmid DNAs were used as for the HA gene sequencing. Influenza viruses were grown in chick embryos and purified by differential centrifugation and treatment with Freon-113. The RNA was extracted by the phenol detergent method using pronase. Virus-specific double-stranded DNA for obtaining recombinant DNA was synthesized on vRNA templates in the presence of synthetic oligonucleotide primers and inserted into a PstI site of the plasmid pBR322 using G-C linkers; E. coli HB101 strain (Plusnin et al., 1983) was used for transformation.

Clones containing the recombinant DNA were selected by screening of the colonies using labelled vRNA as a probe. For sequencing the virus-specific sequences were recloned in the PstI site of pUC18 and pUC19 plasmids containing a polylinker. The plasmid DNA was extracted (Birnboim and Dolly, 1979) and purified by gel filtration on Sepharose CL-2B. Terminal labelling of fragments obtained by digestion with restriction endonucleases BamHI, HindIII, EcoRI,

Table 2. Nucleotide and amino acid changes in the sequences of
HA gene cDNAs and in corresponding proteins of the
A/Bangkok group viruses

Nucleo- tide	Amino acid no.,	Codons with mutations and nonidentified bases and corresponding amino acids of strains								
no.,	antigenic site	m A/Leningrad/385/80	A/Bangkok/1/79	A/Bangkok/2/7						
59	- 7	ATT (Ile)	ATT (Ile)	ATC (Ile)						
76	 1	GCC (ala)	GCC (ala)	GTC (val)						
128	17	CAT (his)	CAC (his)	CAC (his)						
200	41	GAA (glu)	GAG (glu)	GAG (glu)						
228	51 site C	CTA (leu)	ATA (ile)	ATA (ile)						
234	53 site C	GAC (asp) TAC (tyr)*	GAC (asp)	GAC (asp)						
428	117	ACC (tre)	ACT (tre)	ACC (tre)						
638	187 site B	ACG (tre)	ACG (tre)	ACA (tre)						
639	188 site B	GAC (asp)	GAC (asp)	TAC (tyr)						
731	218	GGG (gly)	GGG (gly)	GGA (gly)						
910	278 site C	AGT (ser)	AGT (ser)	ATT (ile)						
959	294	TTT (phe)	T?T (?)	TTT (phe)						
1034	319	GGA (gly)	GGG (gly)	GGG (gly)						
	part**		100,	(0.07						
48	16	GGA (gly)	GG? (gly)							
52	18	GTA (val)	?TA (?)							
56	19	GAC (asp)	G?C (?)							
96	32	ACC (tre)	ACA (tre)							
327	109	GAA (glu)	GAT (asp)							
539	180	TCA (ser)	T?A (?)							
623		*								
624	208	TGG (try)	T??(?)							
625	209	GCC (ala)	?CC (?)							

^{*} The mutation was detected by sequencing of the cloned fragment.

Msp I was carried out using polynucleotide kinases of phage T4 in the presence of γ^{32} P-ATP or the E. coli Klenow fragment DNA polymerase I in the presence of α^{32} P-dNTP ("ISOTOP", U.S.S.R.). For sequencing of cDNA copies and of the cloned fragments we used a modified method of Maxam and Gilbert (1977) (Chumpilo and Kravchenko, 1983).

Results

Analysis of the antigenic properties of the original strain A/Leningrad/385/80 and of its relationship with other viruses of the Bangkok subgroup was performed by a standard HI test using polyclonal antisera (Table 1). It showed that this strain was a drift variant of virus A/Bangkok/1/79. Drift

^{**} Information on the H2 gene region structure of A/Bangkok/2/79 was not published.

changes are connected specifically with the HA. Rabbit serum against the recombinant R16 possessing Neq neuraminidase allowed to exclude the steric hindrance, that might be caused by antibodies against the homologous neuraminidase (NA). A close resemblance between strains A/Leningrad and A/Bangkok/ 2 was detected: these strains and sera against them crossreacted in a homologous titre. However, they were not identical, since different patterns

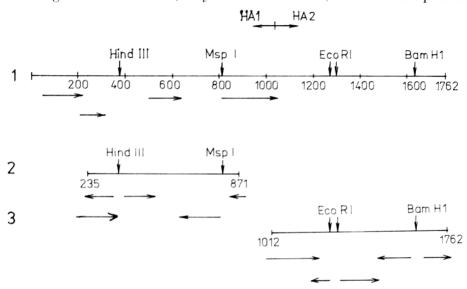


Fig. 1
The strategy of sequencing influenza virus strain A/Leningrad/386/80 HA gene and of cloned DNA-copies of its fragment. 1. Restriction map and schematic representation of the sequencing HA-gene from vRNA; 2. and 3. the same for the 2 cloned fragments.

Table 1. The characterization of influenza viruses A (H3N2) of 1979-1980 (titres in HI test)

	Sera against strains*									
Viruses	A/Bangkok/1/79	m A/Bangkok/2/79	$\frac{\text{A/Leningrad}}{385/80}$	R16**						
A/Bangkok/1/79	320	80	80	80						
A/Bangkok $/2/79$	80	640	160	160						
A/Leningrad/385/80	80	320	160	160						
A/Leningrad/385/80R	80	320	160	320						

^{*} R16 - rabbit antiserum, the rest - rat antisera

^{**} the recombinant strain R16, inheriting HA gene from strain A/Leningrad/385/80 and NA gene from A/Equine/Prague/1/56 was kindly provided by Gorev, N.F., Influenza Research Institute, U.S.S.R. Ministry of Health, Leningrad.

Fig. 2

The nucleotide sequence of influenza virus A/Leningrad/386/80 (H3N2) HA gene cDNA and a corresponding amino acid sequence.

*Controversal results in the sequencing vRNA and cDNA; **in parenthesis the sequences of strain A/Bangkok/1/79 (H3N2) are presented, since corresponding sequences of strain A/Leningrad/386/80 were not determined; ***the deletion of 3 nucleotides is observed following the triplet 225 of HA2.

	ATC	ATG mes	AAG lys	ACT tre	ATC ile	ATT ile	GCT ala	TTG leu	$_{\rm ser}^{\rm AGC}$	TAC tyr	ATT ile	TTC phe	$_{ m cys}^{ m TGC}$
CTG leu	GTT val	TTC phe	GCC ala	CAA gln	AAC asn	CTT leu	CCC pro	$_{\rm gly}^{\rm GGA}$	AAT asn 20	GAC acp	AAC asn	AGC ser	ACA tre
GCA ala	ACG tre	CTG leu	$_{ m cys}^{ m TGC}$	CTG leu	$\begin{array}{c} \rm GGA \\ \rm gly \\ 30 \end{array}$	CAT his	CAT his	GCA ala	GTG val	CCA pro	AAC asn	$_{\rm gly}^{\rm GGA}$	$rac{ ext{ACG}}{ ext{tre}}$
CTA leu	GTG val 40	$_{\rm lys}^{\rm AAA}$	ACA tre	ATC ile	ACG tre	AAT asn	$_{\rm asp}^{\rm GAT}$	$_{ m gln}^{ m CAG}$	ATT ile	$_{\rm gly}^{\rm GAA}$	GTG val 50	ACT tre	AAT asn
GCT ala G*	ACT tre	GAA gly	CTG leu	GTT val	$_{\rm gln}^{\rm CAG}$	$_{\rm ser}^{\rm AGT}$	TCC ser 60	$_{ m ser}^{ m TCA}$	ACA tre	$_{\rm gly}^{\rm GGT}$	AGA arg	CTA leu	$_{ m cys}^{ m TGC}$
TAC asp tyr	$_{\rm ser}^{\rm AGT}$	$\begin{array}{c} \text{CCT} \\ \text{pro} \end{array}$	CAC his	$\frac{\text{CGA}}{\text{arg}}$	ATC ile	CTT leu	GAT asp	$_{\rm gly}^{\rm GGG}$	AAA lys	AAC asn	$_{ m cys}^{ m TGC}$	ACA tre	CTG leu
·	~	0.0m	70	mm ~	~~.			~			~ ~ ~		80
ATA ile	GAT asp	GCT ala	CTA leu	TTG leu	$\frac{\text{GGA}}{\text{gly}}$	$_{\mathrm{asp}}^{\mathrm{GAC}}$	$\frac{\text{CCT}}{\text{pro}}$	CAT his	TGT cys 90	GAT asp	$_{ m gly}$	TTT phe	$_{ m gln}^{ m CAA}$
AAT asn	$_{\rm gly}^{\rm GAG}$	$_{\rm lys}^{\rm AAA}$	$_{ m try}^{ m TGG}$	$_{\rm asp}^{\rm GAC}$	CTT leu 100	TTT phe	GTT val	$_{\rm gly}^{\rm GAA}$	$\frac{\text{CGC}}{\text{arg}}$	$_{ m ser}^{ m AGC}$	AAA lys	GCT ala	${ m TTC}$ phe
AGC	AAC	TGT	TAC	CCT	TAT	GAT	GTG	CCA	GAT	TAT	GCC	\mathbf{TCC}	CTT
ser	asn 110	$_{\rm cys}$	$_{ m tyr}$	pro	$_{ m tyr}$	asp	val	pro	asp	$_{ m tyr}$	ala 120	ser	leu
AGG	TCA	CTA	GTT	GCC	TCG	TCA	GGC	ACC	CTG	GAG	TTT	ATC	AAT
arg	ser	leu	val	ala	ser	ser	$_{ m 130}^{ m gly}$	${ m tre}$	leu	glu	phe	ile	asn
GAA glu	GGC glu	TTC phe	AAT asn	$_{ m try}^{ m TGG}$	$_{\rm tre}^{\rm ACT}$	$_{ m gly}^{ m GGA}$	GTC val	ACT tre	$_{ m gln}^{ m CAG}$	$_{\rm ser}^{\rm AGT}$	$_{ m gly}^{ m GGG}$	$_{ m gly}^{ m GGA}$	AGC ser
TAT	GCT	TGC	140 AAA	AGG	GGA	TCT	GAT	AAC	AGT	TTC	TTC	AGT	$150 \ \mathrm{AGA}$
$_{ m tyr}$	ala	cys	lys	arg	gly	ser	asp	asn	ser 160	phe	phe	ser	arg
CTG	AAT	TGG	TTG	TAC	GAA	TCA	GAA	AGC	AAA	TAT	CCA	GTG	CTG
leu 170	asn	\mathbf{try}	leu	$_{ m tyr}$	glu	ser	glu	ser	$_{ m lys}$	$_{ m tyr}$	pro	val	leu
AAC	GTG	ACT	ATG	GCA	$\mathbf{A}\mathbf{A}\mathbf{C}$	AAT	GGC	AAT	TTT	GAC	AAA	CTG	\mathbf{TAC}
asn	val 180	tre	met	pro	asn	asn	gly	asn	phe	ASP	$_{190}^{ m lys}$	leu	$_{ m tyr}$
ATT	TGG	GGG	GTT	CAC	CAC	CCG	AGC	ACG	GAC	AAA	GAA	CAA	\mathbf{ACC}
ile	\mathbf{try}	gly	val	his	his	\mathbf{pro}	$rac{ ext{ser}}{200}$	${ m tre}$	asp	lys	glu	gln	tre
AAC	CTA	TAT	GTT	CGA	GCA	TCA	GGG	AGA	GTC	ACA	GTC	TCT	ACC
asn AAG	leu AGA	$rac{ ext{tyr}}{ ext{AGC}}$	val CAG	$rac{ ext{arg}}{ ext{CAA}}$	ala ACT	$\frac{\mathbf{ser}}{\mathbf{ATA}}$	$_{ m ATC}^{ m gly}$	arg CCG	$_{ m AAT}$	${ m tre} \ { m ATC}$	val GGG	$\frac{\text{ser}}{\text{TCT}}$	$rac{ ext{tre}}{ ext{AGA}}$
lys	arg	ser	gln	gln	tre	ile	ile	pro	asn	ile	gly	ser	arg

ATT

ACA

GGT

150

gly

tre

tyr

ilo

try

CAT

-120

GAA

GGC

gly

glu

his

ser

tre

Јув

ACA

AAA

AAT

asm

GAA

 \mathbf{AGG}

arg

TGC

сув

asn

glu

110

CTG

AGG

leu

arg

TTC

phe

ala

glu

ACT

CAA

AAA

lys.

gln

tre

GAC

asp

CTG

140

ATA

ile

leu

leu

TCG

ser

arg

TAC

tyr

leu

GAA ATG

ala

met

AAT

AAA

lys

asn

val

glu

glu

CAC

his

AGG GAA

AAC

130

GCT

TGT

 \mathbf{cys}

ala

630

leu

AAA

GAG

GAC

asp

glu

lys

glu

gln

TTT

phe

ATG

met

GCT

ala

asn

CTG

GAC

AAT

160

asn

asp

lou

						,						
conti	nued											
								230				
						\mathbf{AGT}	AGA	ATA	\mathbf{AGT}	ATC	TAT	\mathbf{TGG}
try	val	arg	gly	leu 240	ser	ser	arg	ile	ser	ile	tyr	try
ATA	GTA	AAA	CCG	GGA	GAC	ATA	CTG	TTA	ATT	AAT	AGT	AAT
ile 250	val	lуя	pro	gly	авр	ile	leu	leu	ile	$rac{\mathrm{asn}}{260}$	ser	asn
AAC	CTA	ATT	GCT	CCT	$\mathbf{C}\mathbf{G}\mathbf{G}$	GGT	TAC	TTC	AAA	ATA	CGC	ACT
asn	leu	ile	ala	pro	arg	$rac{ ext{gly}}{270}$	tyr	phe	lys	ile	arg	tre
AAA	AGC	TCA	ATA	ATG	AGG	TCA	GAT	GCA	CCT	ATT	\mathbf{GGC}	ACC
lys	ser	$rac{ m ser}{280}$	ile	met	arg	ser	asp	ala	pro	ile	gly	tre 290
AGT	TCT	GAA	TGC	ATC	ACT	CCA	AAT	GGA	AGC	ATT	CCC	AAT
ser	ser	glu	cys	ile	tre	$_{\mathrm{pro}}$	esn	$rac{ ext{gly}}{300}$	ser	ile	pro	asn
-AAG	$^{\text{CCC}}$	TTT	CAA	$-\mathbf{A}\mathbf{A}\mathbf{C}$	GTA	AAC	-AAG	ATC	ACA	TAT	GGG	GCA
lys	pro	phe	gln	$\frac{\mathrm{asn}}{310}$	val	asn	lys	ile	tre	tyr	gly	ala
CCC	-AAG	TAT	GTT	AAG	CAA	\mathbf{AAC}	ACT	CTG	AAG	TTG	GCA	ACA
$rac{ ext{pro}}{320}$	lys	tyr	val	lys	gln	asp	tre	leu HA 1	lys	leu	ala	tre
ATG	CGG	AAT	GTA	CCA	GAG	AAA	CAA	ACT				
met	arg	asn	val	\mathbf{pro}	$_{ m l}^{ m glu}$	lys HA 2	\mathbf{gln}	tre				
					AGA	GGC	ATA	TTC	GGC	GCA	ATA	GCA
	10				arg	gly	ile	phe	gly	ala	ile 20	ala
TTC	-ATA	GAA	AAT	GGT	mara							
$_{ m phe}$				$\alpha\alpha_1$	TGG	-GAG	-GGA	ATG	GTA	GAC	$\widetilde{\mathbf{GGT}}$	TGG
	ile	glu	asn	gly	try	GAG glu	$\begin{array}{c} { m GGA} \\ { m gly} \\ { m 30} \end{array}$	ATG met	GTA val	GAC asp		TGG try
GGT	TTC	glu AGG					gly				GGT	
$_{ m gly}^{ m GGT}$		Ü	asn	gly	try	glu	$_{30}^{\mathrm{gly}}$	met	val	asp	GGT gly	try
	TTC	AGG	asn CAT his	gly CAA	$\frac{\mathrm{try}}{\mathrm{AAT}}$	glu TCT	$\begin{array}{c} \rm gly \\ 30 \\ \rm GAG \end{array}$	met GGC	val ACC	$\frac{\mathrm{asp}}{\mathrm{GGA}}$	$\begin{array}{c} \text{GGT} \\ \text{gly} \\ \text{CAA} \end{array}$	$ ext{try}$
gly	TTC pho	AGG arg	asn CAT his 40	gly CAA gln	try AAT asn	glu TCT ser	gly 30 GAG glu	met GGC gly	val ACC tre	asp GGA gly	GGT gly CAA gln	try GCA ala
$_{ m GAT}$	TTC pho CTT	AGG arg	CAT his 40 AGC	gly CAA gln ACT	try AAT asn CAA	glu TCT ser GCA	gly 30 GAG glu GCA	met GGC gly ATC	val ACC tre GAC asp	asp GGA gly CAA	GGT gly CAA gln ATC	try GCA ala AAT
gly GAT asp	TTC pho CTT lou	AGG arg AAA lys	CAT his 40 AGC ser	gly CAA gln ACT tre	try AAT asn CAA gln	glu TCT ser GCA ala	gly 30 GAG glu GCA ala	met GGC gly ATC ile	val ACC tre GAC asp 60	asp GGA gly CAA gln	GGT gly CAA gln ATC ile	try GCA ala AAT asn
gly GAT asp AAA	TTC pho CTT lou CTG	AGG arg AAA lys AAT	CAT his 40 AGC ser	gly CAA gln ACT tre GTA	try AAT asn CAA gln ATC ile	glu TCT ser GCA ala GAG	gly 30 GAG glu GCA ala	met GGC gly ATC ile ACG	val ACC tre GAC asp 60 AAC	asp GGA gly CAA gln GAG	GGT gly CAA gln ATC ile AAA	try GCA ala AAT asn TTC
gly GAT asp AAA lys CAA gln	TTC pho CTT lou CTG leu ATC ile 80	AGG arg AAA lys AAT asn	CAT his 40 AGC ser AGG arg	gly CAA gln ACT tre GTA val	try AAT asn CAA gln ATC ile 70	glu TCT ser GCA ala GAG glu	gly 30 GAG glu GCA ala AAA lys	met GGC gly ATC ile ACG tre	ACC tro GAC asp 60 AAC asn	asp GGA gly CAA gln GAG glu	GGT gly CAA gln ATC ile AAA lys	try GCA ala AAT asn TTC phe
gly GAT asp AAA lys CAA	TTC pho CTT lou CTG leu ATC ile 80 CTC	AGG arg AAA lys AAT asn GAA	CAT his 40 AGC ser AGG arg	gly CAA gln ACT tre GTA val GAA	try AAT asn CAA gln ATC ile 70 TTC	glu TCT ser GCA ala GAG glu TCA	gly 30 GAG glu GCA ala AAA lys	met GGC gly ATC ile ACG tre GTA	ACC tro GAC asp 60 AAC asn GAA	asp GGA gly CAA gln GAG glu GGG	GGT gly CAA gln ATC ile AAA lys AGA arg	try GCA ala AAT asn TTC phe ATT
gly GAT asp AAA lys CAA gln	TTC pho CTT lou CTG leu ATC ile 80	AGG arg AAA lys AAT asn GAA glu	CAT his 40 AGC ser AGG arg AAG lys	gly CAA gln ACT tre GTA val GAA glu	AAT asn CAA gln ATC ile 70 TTC phe	glu TCT ser GCA ala GAG glu TCA ser	gly 30 GAG glu GCA ala AAA lys GAA glu	GGC gly ATC ile ACG tre GTA val	ACC tro GAC asp 60 AAC asn GAA glu	asp GGA gly CAA gln GAG glu GGG	GGT gly CAA gln ATC ile AAA lys AGA arg	try GCA ala AAT asn TTC phe ATT ile
	TGG try ATA ile 250 AAC asn AAA lys AGT ser AAG lys CCC pro 320 ATG met	try val ATA GTA ile val 250 AAC CTA asn leu AAA AGC lys ser AGT TCT ser ser AAG CCC lys pro CCC AAG pro lys 320 ATG CGG met arg	TGG try GTA val arg AGG arg ATA dile val ile 250 AAA ilys Lys AAC CTA and ile ile ATT ile AAA AGC TCA ser ser glu Ser glu AAG CCC TTT lys pro phe TCT GAA TTT pro phe CCC AAG TAT pro lys tyr Tyr ATG CGG AAT met arg asn ATG AAT	TGG try val arg gly ATA GTA AAA CCG ile val lys pro 250 AAC CTA ATT GCT ile ala AAA AGC TCA ATA ile AGT GAA TGC glu eys AGT TCT GAA TGC glu eys AAG CCC TTT CAA lys pro CCC AAG TAT GTT val CCC AAG TAT GTT val ATG CGG AAT GTA met arg Asn val	TGG try GTA val arg arg gly arg gly elou 240 CTG gly elou 240 ATA GTA AAA CCG GGA ile val lys pro gly GGA 250 AAC CTA ATT GCT CCT asn lou ile ala pro CTA ATT GCT CCT ile met AAA AGC TCA ATA ATG lys ser ser glu cys ile AAC ATC ile met AGT TCT GAA TGC ATC ser ser glu cys ile AAC AAC AAC AAC AAC lys pro phe gln asn 310 CCC AAG TAT GTT AAG pro lys tyr val lys STA AGA CCA met arg asn val pro	TGG GTA val AGG arg GGT gly CTG lou 240 TCT ser ATA 250 AAC GTA val AAA lys CCG pro GGA gly GAC asp AAA asn CTA ile ATT ala CCT pro CGG arg AAA lys AGC ser TCA ile ATA ile ATG arg AGG arg AGT ser TCT glu GAT eys ACT ile ACT arg AAG lys TCT glu GAA eys TGC ile ATC arg ACT tre AAG pro CCC phe lys TTT tyr CAA tyr AAG tyr GTA tyr ATG arg CGG arg AAT arg GTA tyr CCA tyr GAG pro pro GAG glu tyr ATG arg CGG arg AAT arg GTA tyr CCA tyr GAG pro arg	TGG GTA val AGG arg GGT gly CTG lou 240 TCT ser AGT ser ATA GTA val AAA lys CCG gly GGA asp GAC ile ATA asp ile AAC asn CTA ile ATT ile GCT ala CCT cCT ile CGG arg arg gly 270 GCT 270 AAA lys AGC ser TCA glu ATA cys ATG ile AGT arg CCA ser AGT ser TCT glu GAA cys TGC ile ATC tre ACT pro CCA pro AAC pro GTA pro AAC pro GTA asp AAC pro GTA asp AAC pro GAA pro AAC pro GAA pro AAC pro GAA pro AAC pro GAA pro AAC pro AAA pro AAA pro	TGG GTA val AGG arg GGT gly CTG lou 240 TCT ser AGT ser AGA arg ATA 250 AAC GTA val AAA lys CCG pro GGA gly GAC asp ATA ile CTG lou AAA asn CTA ile ATT ala CCT pro CGG arg arg gly gly gly gly ser TAC asp gly tyr 270 AAA lys AGC ser TCA ile ATA met ATG arg AGG ser TCA asp AAT asp AGT asp ACT asp CCA arg AAT asp AGG lys TCT pro GAA pro TGC pro ATC asp ACT asp CCA arg AAA asp AAG arg CCC pro AAG asp TTT val CAA pro AAA glu pro AAA arg gly AAA ile CCC AAG arg AAT arg GTA arg arg CCA arg arg AAA arg arg CAA arg arg AAA arg arg	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TGG

Fig. 2	contir c	\mathbf{ued}											
TGC	ATA	GGG	TCA	ATC	AGA	\mathbf{AAT}	GGA	ACT	TAT	GAC	CAT	GAT	GTA
$_{\rm cys}$	ile	gly	ser	ile	arg	asp	gly	$^{ m tre}_{170}$	$_{ m tyr}$	asp	his	asp	val
TAC	AGA	GAC	GAA	GCA	TTA	AAC	AAC	CGG	TTT	CAG	ATC	AAA	GGT
$_{ m tyr}$	arg	asp	glu	ala 180	leu	asn	asn	arg	phe	gln	ile	lys	gly
GTT	GAG	CTG	AAG	TCA	GGA	TAC	AAA	GAC	TGG	ATC	CTG	TGG	ATT
val 190	glu	leu	lys	ser	gly	\mathbf{tyr}	lys	asp	try	ile 200	leu	try	ile
TCC	TTT	GCC	ATA	TCA	\mathbf{TGC}	TTT	TTG	CTT	TGT	GTT	GTT	TTG	CTG
\mathbf{ser}	phe	ala	ile	ser	cys	$^{ m phe}_{210}$	leu	leu	$_{\mathrm{cys}}$	val	val	leu	leu
GGG	TTC	ATC	ATG	TGG	GCC	\mathbf{TGC}	CAA	AAA	GGC	AAC	ATT	AGG	\mathbf{TGC}
gly	phe	$^{ m ile}_{220}$	met	try	ala	$_{\mathrm{cys}}$	gln	lys	gly	asn	ile	arg	$_{ m cys}$
AAC asn	ATT ile	TGC cvs	ATT ile	TGA	GTG	TAT	TAG	***	TTA	AAA	ACA	CCC	TTG
		•											
TTT	CTA	CT											

of the interaction of sera against these strains with virus A/Bangkok/1 were observed (1/2 to 1/8 of the homologous titre, respectively).

The strategy of sequencing is shown in Fig. 1. The information was obtained mainly by sequencing the cloned DNA copies (80%). In those regions, where the sequence was determined by both methods, complete coincidence of the data was observed with the exception of one case (nucleotide 234 of HA1 region) which will be discussed below. Nucleotide sequence of HA gene was established (beginning with 27th nucleotide) on the 3'-terminus of vRNA except of 100 nucleotides flanking the restriction endonuclease recognition sites (which were labelled).

The cDNA nucleotide sequence of the HA gene and the corresponding amino acid sequence are presented in Fig. 2. Amino acids are numbered

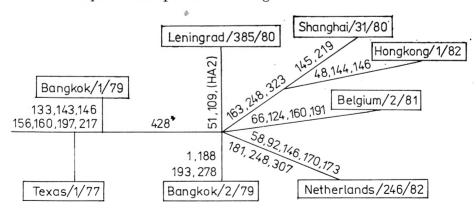


Fig. 3

Evolutionary interrelationships of human influenza virus A (H3N2) HA genes(Petrov et al. 1986). Figure also shows the localization of the amino acid exchanges. *The localization of silent nucleodite substitution.

from the first residue of the mature protein; the nucleotide 78 from the 3'-terminus of vRNA is the first nucleotide of the triplet coding for the first amino acid. The mature HA molecule contains 329 amino acid residues in the HA1 region and 221 amino acid residues in the HA2 region. Comparing the HA gene nucleotide sequence of virus A/Leningrad/385/80 and of the most closely related strains A/Bangkok/1/79 and A/Bangkok/2/79 (Both and Sleigh, 1981; Both et al., 1983) a number of differences was found; these are shown and summarized in Table 2.

The missense mutation in codon 51, leading to the substitution of isoleucine to leucine residue is the most important difference of virus A/Leningrad/385/80 HA gene sequence from that of strains A/Bangkok/1/79 and A/Bangkok/2/79. This amino acid is a part of the antigenic site C. This change apparently stimulated the virus drift. No other differences in the HA amino acid sequences which would occur in their antigenic sites were detected in the HA of strains A/Leningrad/385 and A/Bangkok/1/79. On the other hand, two differences were observed with virus A/Bangkok/2/79. The first two strains have aspartic acid residue at position 188 (site B); the third strain has tyrosine in this position. The first two strains have serine residue at position 278 (site C) and the third strain has isoleucine in this position.

One amino acid change was detected in the conservative HA2 region of the HA of virus A/Leningrad/385/80 in comparison with virus A/Bangkok/1/79 (this is a change at pos. 109 of HA2 from aspartic acid to glutamine acid). The mutation at residue 327, leading in this case to a meaningful change, was noticed not only among viruses of influenza A/Hongkong subtype but also earlier. Valine was located at pos. 18 of HA2 of the strain A/Leningrad/385/80; the authors could not identify the first nucleotide of corresponding codon in the gene of virus A/Bangkok/1/79, however, the strain A/NT/60/68 has isoleucine at residue 18. Amino acid changes in HA2 are detected rather infrequently because this very conservative region has a structural function. So, viruses A/NT/60/68 and A/Bangkok/1/79 differ only by 3 amino acids in this region. Probably, the mutation detected by us at residue 18 is also typical for strain A/Bangkok/1/79. In latter case this mutation can be considered the fourth one.

A single silent mutation makes strains A/Leningrad/385/80 and A/Bangkok /2/79 interrelated by the presence of C in the position 428 of the HA1 region of HA-gene. Thymidine is located in this position in strain A/Bangkok/1/79 and in earlier strains. The mutations at position 428 of HA1 region and at position 96 of HA2 region of virus A/Leningrad/385/80 (in comparison with virus A/Bangkok/1/79) were confirmed by restrictase mapping, since the change in the first position mentioned causes appearance of a new site for Mva1; the change in the second position causes appearance of a new site for Msp1. We detected a deletion of 3 nucleotides (676-678 in HA2 region) in the nonstructural region of HA gene of virus A/Leningrad/385/80; thus, this region of strain A/Leningrad/385/80 contains 32 nucleotides instead of usual 35 nucleotides typical for other isolates of subtype A/Hongkong. The strain A/USSR/2/85 (H3N2) has an analogous mutation (Petrov et al., in press).

Discussion

Summarizing all the data obtained one can see that a close relationship was established between HA genes of viruses A/Leningrad/385/80 and A/Bangkok/1/79, although a single silent mutation has been found pointing at relatedness of A/Leningrad/385/80 and A/Bangkok/2/79. So, there are only 2 meaningful differences between strains A/Leningrad/385/80 and A/Bangkok/1/79: at the residue 51 of HA1 (antigenic site C) and at the residue 109 of HA2. There are also 5 silent mutations, none of them is located in the region coding for the antigenic site. Five meaningful differences were detected between strains A/Leningrad/385/80 and A/Bangkok/2/79 (triplets 1, 51, 188, 193, and 278) from them 3 mutations were located in antigenic sites B (188) and C (51 and 278); 7 silent changes of nucleotides were also detected in this case.

Thus, the sequencing results (Table 2) and antigenic analysis (Table 1) of strains A/Leningrad/385/80 and A/Bangkok/1/79 coincided. It follows that the molecular basis for the drift of the first strain from the second one is the change of a single amino acid, located in the antigenic site C (Ile 51 — Leu). At the same time upon comparison of strains A/Leningrad/385/80 and A/Bangkok/2/79 certain contradictions are revealed, i.e. more pronounced structural differences between haemagglutinins of these strains are not reflected in HI test. In our opinion this is explained not only by disadvantages of the use of polyclonal antisera (one can succed thereby in revealing drift differences of strains A/Leningrad/385/80 and A/Bangkok/1/79) but also by the fact that two changes (Ile 51—Leu and Ile 278—Ser) are located in the antigenic site C and can compensate each other due to their close location. Obviously to clarify the situation it is necessary to use a sufficiently representative set of monoclonal antibodies to the HA of indicated strains.

The mutation at residue 53 of strain A/Leningrad (from aspartic acid to tyrosine) detected upon sequencing of cloned DNA copy HA-gene, needs a special discussion. When determining the primary structure in this region using vRNA no mutation was detected. The change in the cloned DNA can be explained by two ways: 1. an error of reverse transcriptase occurred during cDNA synthesis on the vRNA template. (It is important that the modified nucleotide is the first in the cloned fragment and follows immediately the connector sequence). 2. at random selection of a mutant gene during the cloning. The second suggestion seems to be more likely, since first, the presence of minor components in RNA, differing from the main bulk of corresponding genes is characteristic for the population of influenza virus (Petrov et al., 1986) and second, because mutations in amino acid 53 (always and/or in the first base of the triplet) already have been observed in a number of Hongkong subtype strains and their variants selected by monoclonal antibodies (Webster et al., 1983).

Thus, in evolutionary scheme of Hongkong subtype HA genes, the branch, leading to strain A/Leningrad/385/80 should be started from the point common for all strains, following A/Bangkok/1/79 (Petrov et al., 1986). The presence of mutation at position 428, common for strains A/Leningrad/385/80

and A/Bangkok/2/79, detectable in none of the earlier representatives of this subtype, including A/Bangkok/1/79 witness in favour of this scheme; a part of the scheme of HA gene evolution of H3N2 subtype is presented in Fig. 3. The scheme includes strains isolated after 1977.

According to the scheme, changes of 3 amino acid residues in antigenic site A (133, 143, and 146) and 3 amino acid — in antigenic site B (156, 160, and 197) are mutations, common for the group of strains, starting from A/Bangkok/1/79; these mutations distinguish them from the group of viruses, related to strain A/Texas/1/77. The reversion of amino acid in position 217 is also common for these viruses. The following changes of amino acids among some strains in this group have emerged in the antigenic sites: 144 (Hongkong/1/82), 145(Shanghai/31/80),146(Hongkong/1/82) and Netherlands/246/82 — site A, 160(Belgium/2/81) and 188(A/Bangkok/2/79) and Hongkong/1382 — site B, 51(A/Leningrad/385/80) and 278(A/Bangkok/2/79) — site C.

Three of these mutations (at positions 51, 145, and 160) induce the appearance of such amino acids, which were absent earlier in these positions, and the mutation at residue 51 is unique because the mutations were not detected in this point neither before nor after strain A/Leningrad/385/80. The mutation at position 188 in the strain A/Bangkok/2/79 HA gene is a repeated one and the changes at position 188 of strain Hongkong/1/82 as well as at positions 144, 146, and 278 of strain Hongkong/1/82 and of other strains are reversions. The presence of repeated mutations and, especially, of reversions corresponds to the suggestion that the number of different variants of amino acid composition of antigenic sites meeting the requirements of retaining structural and functional stability of the protein molecule is severely restricted.

References

- Birnboim, H. C., and Dolly, J. (1979): A rapid alkaline extraction method for screening recombinant plasmid DNA. Nucleic Acids Res. 6, 1513-1523.
- Both, G. W., and Sleigh, M. J. (1981): Conservation and variation in the haemagglutinins of Hong Kong subtype influenza viruses during antigenic drift, J. Virol. 39, 663-672.
- Both, G. W., Sleigh, M. J., Cox, N. J., and Kendal, A. P. (1983): Antigenic drift in influenza virus H3 haemagglutinin from 1968 to 1980, multiple evolutionary pathways and sequential amino acid changes at key antigenic sites, J. Virol. 48, 52-60.
- Chuvpilo, S. A., and Kravchenko, V. V. (1983): Solid phase method for determination of DNA nucleotide sequences. Biorg. Chem. 9/12, 1634-1640 (in Russian).
- Gorev, N. E., Ermachenko, T. A., and Lonskaya, N. I. (1983): Influenza A/Leningrad/385/80R (H3N2) virus strain for preparation of inactivated influenza vaccine, U.S.S.R. Patent No. 1056636, 22, 07, 1983 (in Russian).
- Maxam, A. M., and Gilbert, W. (1977): A new method for sequencing DNA. Proc. natn. Acad. Sci. U.S.A. 74, 560 - 564.
- Petrov, N. A., Netesov, S. V., Blinov, V. M., and Vasilenko, S. K. (1986): Evolution of the influenza A virus haemagglutinin gene of the H3 subtype. Mol. Genet. Mikrobiol. Virusol. 2, 7-14 (in Russian).
- Petrov, N. A., Grinev, A. A., Vasilenko, S. K., Zhilinskaya, U. H., and Golubev, G. B. (1989): Structure of the been agglutinin gene of influenza virus in serial chick embryo passages. Biull. cksp. Biol. Med. (in press, in Russian).

- Plius nin, A. Z., Rivkin, M. I., Kumarev, V. P., and Kuznecov, O. K. (1983): Clonong of hae-magglutinin gene sequences of the influenza A (H3N2) virus, pp. 38-44. In G. U. Karpukhin (Ed.): Molecular Biology and Genetics of Influenza Viruses, Leningrad (in Russian).
- Pliusnin, A. Z., Rivkin, M. I., Kumarev, V. P., and Kuznecov, O. K. (1989): Structure of the haemagglutinin gene of influenza virus in serial chick embryo passages. *Biull. eksp. Bioll. Med.* (in press, in Russian).
- Webster, R., Laver, W., and Air, G. (1983): Antigenic variation among influenza A viruses, pp. 123-160. In P. Palese, D. W. Kingsbury (Eds): Genetics of Influenza Viruses, Springer-Verlag Wien, New York.